Summary of Chapter 3

We introduce arithmetic functions, functions from \mathbb{N} to \mathbb{C}. To each arithmetic function f we associate a Dirichlet Series, $D_{f}(s)$. Looking at the Dirichlet product of two such series $D_{f}(s) D_{g}(s)$ we are formally led to a new Dirichlet series with coefficients given by the Dirichlet convolution $f * g$, thus formally

$$
D_{f * g}(s)=D_{f}(s) D_{g}(s) .
$$

We prove that the convolution of multiplicative functions is multiplicative.

Question How to factor a given arithmetic function F ?
Factor the Dirichlet Series. If F is a multiplicative arithmetic function than the Dirichlet Series $D_{F}(s)$ has an Euler product. Factor the Euler product of $D_{F}(s)$ into "simpler" Euler products, which in turn equal Dirichlet Series $D_{f}(s)$ for various f. This "suggests" that F is the convolution of these f. Usually these $D_{f}(s)$ will be of the form $\zeta(\ell s)$ or $\zeta^{-1}(k s)$ for various k and ℓ. We introduce the arithmetic function μ_{k} by

$$
\frac{1}{\zeta(k s)}=\sum_{n=1}^{\infty} \frac{\mu_{k}(n)}{n^{s}},
$$

for $\operatorname{Re} s>1 / k$.
As noted in the lectures, if f, g and F are multiplicative then it suffices to prove equality on prime powers. It was also noted that

$$
(f * g)\left(p^{r}\right)=\sum_{0 \leq k \leq r} f\left(p^{k}\right) g\left(p^{r-k}\right)=\sum_{a+b=r} f\left(p^{a}\right) g\left(p^{b}\right) .
$$

A number of arithmetic functions are introduced and relations are found between them. The most important relation is Möbius Inversion $1 * \mu=\delta$, or equivalently

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { otherwise }\end{cases}
$$

